

TNO report

Final report of the OnLive ClickNL Project:
The social network of the real world

Date 31 Januari 2019

Author(s) Wilco Wijbrandi, Eelco Cramer, Gjalt Loots, Robbert Schep

(RSNMC)

All rights reserved.
No part of this publication may be reproduced and/or published by print, photoprint,
microfilm or any other means without the previous written consent of TNO.

In case this report was drafted on instructions, the rights and obligations of contracting
parties are subject to either the General Terms and Conditions for commissions to TNO, or
the relevant agreement concluded between the contracting parties. Submitting the report for
inspection to parties who have a direct interest is permitted.

© 2019 TNO/RSNMC

1

TNO report

2 / 5346

Contents

1 Introduction

2 Deliverables and research questions

3 The Onlive concept
3.1 Groups
3.2 Plugins
3.3 Cards
3.3.1 Archetypes cards
3.3.2 Card states
3.3.3 Card distribution
3.3.4 Card lifecycle rules
3.4 Use cases in the app

4 Onlive ecosystem
4.1 Stakeholders
4.2 Business model

5 System architecture
5.1 Overview
5.2 Backend
5.2.1 Communication through XMPP
5.2.2 Context group definitions and plugin hosting
5.3 Frontend: The Onlive App
5.3.1 Architecture
5.3.2 Context Engine
5.3.3 Plugin runtime
5.4 Serverless communication

6 Conclusions and further work

7 Appendix A: Mapping of Onlive concepts to XMPP
functionality

7.1 Interacting with the Onlive XMPP service
7.2 Use cases for Nearby groups
7.2.1 Posting the observation of another nearby user
7.2.2 Getting nearby group change notifications
7.2.3 Getting cards of nearby user
7.3 Use cases for context groups
7.3.1 Joining a context group
7.3.2 Leaving a context group
7.4 Generic use cases
7.4.1 Registering with the Onlive server
7.4.2 Listing other members of a group
7.4.3 Publishing a card
7.4.4 Removing a card
7.4.5 Sending a message to a card

2

TNO report

3 / 5346

8 Appendix B: Context description language
8.1 Context description
8.2 Context Description Language
8.3 Context sources
8.3.1 Bluetooth
8.3.2 Clock
8.3.3 Geography
8.3.4 NFC
8.3.5 Wi-Fi
8.3.6 Constants
8.3.7 Operators

3

TNO report

4 / 5346

“The complexity and urgency of the problems faced by us
earth-bound humans are increasing much faster than our

combined capabilities for understanding and coping with them.
This is a very serious problem. Luckily there are strategic

actions we can take, collectively.”
- Douglas Engelbart

Executive summary

It's just about 12 years ago that Apple and Google launched
the smartphone into our world. They successfully designed a
software system for combining the power of the internet with
the power of the cell phone. Never in history a technology
became so fast, so deeply rooted in society. Now we are
paying (and playing) with our phones as if we never did it
differently.

It's safe to say the smartphone changed our society in a lot of
ways. In a lot of ways it made our lives more convenient and
more entertaining (never a dull moment anymore!) It's also safe
to say that the smartphone changed our social lives and has an
influence on our mental and physical health. There are not
many aspects in our lives that aren't touched by that one
device. A device that we bring everywhere to be connected
with everything, all the time.

As researchers, developers, engineers and designers, it's our
job to be critical about the role of a device that has so much
impact on different levels in our society. Mostly because we
can not just blindly follow the trajectories of a few giant
commercial tech corporations. Their motives are clear. The
ideological goal of the tech giants probably are something in
the line with 'having your digital life in your pocket' and 'always
have access to all the information and functionality you need'.
The actual goal, of course, was to make as much money as
possible no matter what costs. There was a new market to
conquer and of course, they foresaw that those who dominate
this new market will be the leaders of the brand new
information society.

4

TNO report

5 / 5346

The systems they came up with, IOS and Android, are basically
the same systems in a different skin and some minor usability
differences. Most importantly they both are based on the
premises that users need to install applications made by third
parties. These applications are mostly free and generate a lot
of data about the one who is using them. Data which is sold to
advertisers.

Since data harvesting and selling is the main business model,
most applications are designed to be used as much as
possible. Most software developers and user experience
designers are constantly busy with one thing: to make users
use their application as much as possible. They are busy
capitalizing on the data from the users.

Vision

We believe there is a much higher potential to be capitalized
on. We are not talking about commercial capitalization. We are
not interested in making more money with the smartphone. We
are talking about the capitalization of human intellect. We
believe the smartphone can become a tool for intellectual
progress for everyone on this planet. We believe the
smartphone is an enabling and supportive technology. If used
correctly, it can enable societies to make the transition they all
need to make. It's important to understand that Onlive has one
clear goal: to turn the smartphone into a tool for intellectual
progress and problem-solving.

Mission

We want to build a platform that supports people in their daily
lives when they need to interact with their varying
surroundings. We want to optimize but minimize those
interactions because we want to reduce redundant screen time
and increase quality group collaboration processes.

We are not in the business of making money. Money is just a
tool to get us there. We are in the business of contributing to
the global issues that face us all. Our specific mission: to pivot
the smartphone into a tool for intellectual progress so it can
help communities all over the world to make better decisions
and solutions. In today's world, one thing is clear: to leave a
liveable planet to next generations, we need all the talent in the
world working with relevant information and functionality on real
solutions. Right now the smartphone is not enabling us to do
that at all. It distracts us and makes us operate on a more
individual level. Onlive wants to change that. This document is
a blueprint for the foundation of new platform that can do
exactly that.

In order to comprehend exactly what is proposed it’s advised to
have an open and progressive mind that does not accept
current reality and looks to alter it for the better of the planet
and all nature that is living on it.

5

TNO report

6 / 5346

1 Introduction

Onlive is designed with the scientifically accepted idea in mind
that humans are, by nature, social animals that always have
relied on dynamic communities and groups for survival. In
groups, humans are more effective, creative and better at
survival . With this evolutionary awareness in mind it’s 1

astounding to realize that currently almost all computer
systems (and most certainly the most used ones) are designed
to provide information and functionality to the​ individual​.

Onlive is a project that does the opposite and appeals to the
social, community driven species we are. It’s a new information
system that is designed to provide information and functionality
to ​groups of individuals that need to work or act together in the
physical world. This simple idea complies with the work of
computer pioneer Douglas Engelbart (1925-2013). His
research on Collective IQ and Dynamic Knowledge
Repositories are used to explain the choices we made in
designing the Onlive MVP.

“Whether developing a new product or service, researching a
topic of interest, seeking a cure for cancer, or improving
conditions in underserved communities, a group's Collective IQ
is a key determinant of how effectively it will respond to the
challenges presented. More specifically, regardless of the end
goals, it comes down to how quickly and intelligently the group
can identify needs and opportunities, develop and deploy
solutions, and incorporate lessons learned, while continuously
iterating and adapting to changing conditions until the goals are
met” - ​(Douglas Engelbart Institute, about Collective IQ ​) . 2

The smartphone is one of those technologies where you clearly
see the individualistic design. Everything about the smartphone
is aimed at the individual. The main business model strategy is
to retrieve as much as data possible from one person. It allows
people to get information from and connect with people all over
the world. Although this has many advantages, it also has a
downside: it distracts people from their surroundings. Onlive is
a concept that tries to change that: instead of connecting one
person with the rest of the world, it connects groups of people
with their local world, facilitating efficient interaction with things
and people around them, instead of distracting them from
exactly that.

1 https://www.nature.com/articles/nature10601
2 http://www.dougengelbart.org/content/view/172/130/

6

http://www.dougengelbart.org/content/view/172/130/

TNO report

7 / 5346

Onlive can be summarized in four core functionalities:

● Connect people with other people around them
● Connect people with companies/organisations around

them
● Connect people with devices around them
● Facilitate interaction for verbal social interaction among

groups of people

In the Onlive ClickNL project, research organization TNO
collaborated with the RSNMC, Johan Cruijff Arena, FONK,
Stampwallet, Groovidi, the Office Operators and Martin and
Lewis to work out the Onlive concept and develop a
proof-of-concept.

RSNMC organized workshops with all project partners to
determine in what way Onlive could add value for their
business. For all partners a design was made for their use
case, which resulted in requirements for Onlive itself.

This document is the project report, in which the technical
research and development of Onlive is described. This
research and development was done in cooperation with all
project partners, but was mainly executed by TNO and
RSNMC. Also, Fair2Media was hired as a subcontractor, which
assisted with working out the user experience and the user
interface for the Onlive app.

2 Deliverables and research questions

This document is the main report of the Onlive project.
However, there are additional results of the project made
available.

● The Onlive Plugin ​Software Development Kit (SDK),
consisting of:

o Executable (App) for Android (in the form of an
.apk file)

o Developer documentation
o Example Plugin

● The Onlive App
o Executable (App) for Android (in the form of an

.apk file)
o Onlive App - Functionality and priority

(document)
● The Onlive backend

o Custom Onlive logic for integration with the
XMPP server

7

TNO report

8 / 5346

o The Onlive registry, which hosts
▪ Context group definitions
▪ Plug-in executables (in the form of a

.zip file)

In the project proposal 5 research questions (RQ) and 6
deliverables (D) were proposed. Since some of the resource
questions and deliverables are addressed in one of the other
project results. The following table indicates where research
questions or deliverables are addressed.

Item Where addressed
RQ1. How to enable the dynamic emergence of
groups?

Section 5.3.2

RQ2. How to dynamically deploy plug-ins based
on context information?

Section 5.2

RQ3. What kind of functionality should the
platform offer plug-ins and how can functionality
be extended in the future?

Section 5.3.3

RQ4. How can groups be created and data from
plug-ins be exchanged without relying on an
internet connection?

Section 5.4

RQ5. How can the Onlive backend be designed
in a robust and scalable way?

Section 5.2

D1. Context engine description Section 5.3.2
D2. Plugin run-time description Onlive Plugin SDK

documentation
D3. Feasibility report of direct or hybrid
communication for Onlive

Section 5.4

D4. Platform architecture document Chapter 5
D5. Onlive App Onlive App
D6. Onilve development guide Onlive Plugin SDK

documentation

Many partners developed concepts or implementations for their
integrations with Onlive. They are not covered by this report
since they are the property of the respective project partners.

8

TNO report

9 / 5346

3 The Onlive concept

Onlive is a platform technology that allows end users to interact
with people and things in their physical surroundings. From the
point of view of the End user, Onlive is an App they install on
their smartphone.

When people use the Onlive app, they automatically become
part of Groups. When you are in a venue, the user can
automatically become part of the group in that venue, together
with staff and other guests. When the user is in a meeting
room, it becomes automatically part of a group which consists
of all other people in the room. A group can be small or big; in
theory, there could also be a group for the entire city.

Onlive facilitates interaction among people and devices, but it
does not ​define what this interaction should be; this is
determined by Plugins. Plugins can be seen as mini-Apps that
are available in a group and that are automatically downloaded
on the smartphone when user becomes part of that group.
Plugins can be developed by anyone. There could be generic
plugins which facilitate common interactions, but there can also
be branded plugins for specific locations or specific events.
Plugins allow End users to interact with their surroundings
(interaction with other people, with organisations or with
devices).

“Interactions” is a relatively abstract term. An interaction could
be sending someone a link to a website, it can be file, it can be
contact information, it can be vote on a poll, it can be an
answer to a quiz, but it can also be something much more
dynamic, such as controlling a virtual character in a game.
Each of these example interactions will require a different
plugin. Sometimes people would like to save those interactions
when they make use of a plugin, sometimes it makes no sense
to save them. In order to provide a structure which allows
people to save interactions for which that make sense, we
introduced the concept of a ​Card​. A card can be seen as a file
on a computer. It can be stored and it can be transmitted. But a
file on its own is usually not very useful. You need a program in
order to open the file. In Onlive, this program is the Plugin.

In the following sections, the concepts Group, Plugin and Card
are described in more detail.

3.1 Groups

When the user opens the Onlive App, a list of currently
available groups is shown. Available groups are determined
automatically; the user doesn’t have to find a group manually.
There are two types of groups in Onlive, which have slightly
different mechanics.

9

TNO report

10 / 5346

Nearby group
The Nearby group is always available and consists of End
users who are physically near to each other or in the same
room. There is only one Nearby group. When there is a
meeting going on in a meeting room, all users should be part of
the same group, and no one outside of the meeting room can
be part of the group. Onlive makes use of Google Nearby, a
library that makes use of ultrasound signals in order to
determine which phones are near to each other. Ultrasound
cannot be heard by humans, but cannot travel through walls
(unlike radio signals like Bluetooth and WIFI). This way, groups
are formed in a way that is likely to make sense to users in the
real world; people in the same room are in a group together.
The downside of Google Nearby is that it requires an Internet
connection to operate.
Users are always part of the nearby group. When no other
Onlive users are nearby, the group will consist out of the end
user him/herself.

Context group
In contrast to the Nearby group, there can be many Context
groups. Context groups are defined for people who share the
same context; this can for example be physical location (a
certain venue) or an event (a location in combination with a
certain period). Context groups are defined using Context
rules, which are evaluated by the Context engine, which was
originally developed in the Transient Apps project.

Context groups are defined by the Onlive backend. For
example, a store might want to define a group for people who
are physically present in the store. In contrast to the Nearby
group, which is always available, Context groups need to be
created manually by someone in order to become available to
users.

The advantages of creating a Context groups over the Nearby
group are:

- group size is not limited by ultrasound (so it’s usable in
bigger areas)

- complete control over the available plugins (so clients
can determine what there clients/end users can do
when they are in their group

More information on how Context groups are defined using
Context rules can be found in ​Appendix B​.

3.2 Plugins

Plugins are the mini-Apps which allow people to interact with
each other in a specific way in a group. For example, there
could be a Plugin which allows you to send pictures to other

10

TNO report

11 / 5346

people in the group. For each group, there is a list of which
Plugins are available to the End users in that Group. For the
Nearby group Onlive determines which Plugins are available,
for Context groups this is defined by the group host (the one
who created the group). .

Plugins are mini-Apps that are automatically downloaded
installed whenever people become part of a Group, or are
removed when they leave the Group. Plugins are executables.
Users don’t have to worry about Plugins, and they don’t directly
interact with them. Rather they interact through them.

3.3 Cards

A Card is how users experience a Plugin. A card represents a
piece of data, which can be handled by a Plugin.

Whenever a user opens a Group which is available in the
Onlive App, it enters the ​Stage​. In the Stage, all the cards that
are currently published in that Group are shown. A card could
for example represent a business card. When the user clicks
on the card, the card is ​opened​. The Plugin is launched,
displaying the information that was stored in the Card. How the
information inside the card is represented, is determined by the
Plugin. When a group allows multiple Plugins to be used, there
are also multiple types of Card that can be present in the
Stage. Each Plugin is associated with one type of Card.

Users can decide to save a card from the stage (if the card is a
savable card). When they do that, the card is saved locally on
smartphone. Saved cards can also be found and opened later
under ​saved cards​. It is also possible for users to publish saved
cards to groups it is part of. So, for example, it is possible to
save a card from the stage of Group A, and then later publish it
in Group B, given than that the user is part of both groups and
both groups allow the usage of the Plugin the card is
associated with.

Users can also use a Plugin to create a new Card. When they
decide to create a new Card of a certain type, the associated
Plugin is launched and a wizard is shown to create the new
card. How a new Card should be created is determined by the
Plugin.

Privacy policies

Before diving deeper in the types of cards its important to shine
some light on the very important privacy choices we made. For
privacy related questions about how we deal with the users
identity in a group and it’s interaction with cards and plugins,
it’s important to understand we built Onlive to support people in
their daily lives when they need to interact with their varying
surroundings. We want to optimize but minimize those
interactions because we want to reduce redundant screen time
and increase quality eye talk. The goal is to cooperate and

11

TNO report

12 / 5346

communicate with those in our immediate world, in such a way
that we become better in fixing our world. If you want to build a
digital system for the physical world you have to apply certain
rules of the physical world when you design the system. One of
the key rules in social group behaviour is that the more trust
there is, the more effective we communicate.

“When trust is present, people step forward and do their best
work, together, efficiently. They align around a common
purpose, take risks, think out of the box, have each other’s
backs, and communicate openly and honestly. When trust is
absent, people jockey for position, hoard information, play it
safe, and talk about— rather than to—one another”. - ​Dennis
Reina, PhD Michelle Reina, PhD David Hudnut, MIA, Why
Trust Is Critical to Team Success, 2017

Onlive has to become and stay a tool that people can trust like
a strong spade that everyday helps people to work their
ground. Something to rely on. Something you can just use and
you don’t have to worry about any scam or failure. To establish
trust in groups we’ve mimicked our natural group conventions
as close as possible when we made some key UX decisions.
The most direct evidence of such a choice is that we follow the
natural law of matter that dictates that you can’t be invisible
when you are participating in a group. Therefore with Onlive
you can’t be anonymous when you participate in a group.

This sensitive and complex matter seems to be an issue that
can be handled in a later stage when people are actually using
the platform but in present days it has never been more
important that you have to be clear and transparent about your
privacy policies from the beginning. Onlive wants to do things
different than traditional social media and privacy is one of
those areas where we can establish that difference.

To address this issue head on we introduce the Onlive
passport. The premise of this idea is, again, mimicked from our
physical world. When you travel to another country you bring
your passport. When you want to use Onlive you have to have
an Onlive passport.

The Onlive Passport is made when you register as a user for
the first time. It’s basically a quick registration process we are
familiar with when we use other online platforms.

- Email (Mandatory and to be verified)
- Phone number (Mandatory and to be verified)
- Name (Mandatory and not verifiable)
- Username (Mandatory and not verifiable)
- Photo (Not mandatory and not verifiable

After this registration process Onlive will assign a unique
number in the form of an UUID. This UUID is connected to your
personal information and together they form your Onlive
passport that allows you to enter and participate in groups.

Regarding privacy issues we have to address two specific
situations:

12

https://www.ccl.org/wp-content/uploads/2017/05/why-trust-is-critical-team-success-research-report.pdf
https://www.ccl.org/wp-content/uploads/2017/05/why-trust-is-critical-team-success-research-report.pdf
https://www.ccl.org/wp-content/uploads/2017/05/why-trust-is-critical-team-success-research-report.pdf

TNO report

13 / 5346

1. What happens when you enter a group but don’t
interact with any of the available cards.

2. What happens when you enter a group and interact
with one or more cards.

We separate these two situations because Onlive basically just
facilitates the existence of groups. What happens in the group
is mostly determined by the group host and the available
plugins. In general you could say that Onlive only keeps track
of the groups being formed and the users that ENTER the
group but does not keep track of the INTERACTIONS that
happen inside the group. Interactions with cards are being
tracked by card owners. Interactions with plugins are being
tracked by plugin owners.

1. What happens when you enter a group but don’t
interact with any of the available cards.

What happens when you enter a Nearby group is that:
A. your UUID will be used as a sign-in to the group and

will display your Username and Photo in the attendees
list for other people to see.

i. notice that you your Username does
not have to be your real name.

B. your UUID will be registered in the Onlive backend,
connected to the time and place of the groups
existence. The Onlive backend only saves the UUID
for 24 hours and than deletes all registrations. The
Onlive backend will ONLY save the UUID and not the
personal information that belong to that UUID.

i. This information will never be given to
third parties unless that information
can help verified government
organisations solving criminal
activities.

What happens when you enter a Context group depends on
the mandatory privacy decisions the group host made when
creating the group. We imagine that there will be two options
group host can choose from.

A. Standard: the same privacy rules as for the nearby
group

B. Custom: the sign-in process requires extra permissions
of users depended on the Identity plugin the group host
choices .

For example: a group host creates a group for his networking
event. He wants his visitors to share more information about
themself than just a username and a picture. In order to do that
he has to install an Identity Plugin for his group that complies
with his identity demands. In this case he chooses the business
card plugin that demands from users to sign in with their
business card. When the user enters the group that plugin will
ask the user to publish his business card to the stage. If the
user does not have a business card he can create one very
quickly with the business card plugin.

13

TNO report

14 / 5346

This way we can foresee different kind of identity plugins that
generate different kind of sign-in cards. This is a smart and
controllable way of creating transparent situation regarding the
privacy of users. They are either signing in with their Onive
passport or are asked to hand in a different form of
identification that is chosen by the groups host.

2. What happens when you enter a group and interact
with one or more cards.

The general rule is that your Onlive passport will always be
attached to your interactions with cards. It does depends if a
card is marked by the owner as savable, collectable, reusable
or re-publishable what exactly happens but in general this is
what happens:

- If you create a new card, your Onlive passport is
registered als ‘Owner’ of the card (there can only be
one owner of a card)

- If you save a card of somebody else, your Onlive
passport is registered as ‘collector’ of the card and the
owner of card will be able to see who this collector is.

- If you publish a card from somebody else, your Onlive
passport is registered as a ‘publisher’ of the card and
the owner of the card will be able to see which collector
has published his card in what group.

- If you reuse a card from somebody else to make your
own card (with the same plugin) your Onlive passport
is registered as ‘Owner’ of the card.

The idea is that a card always has a back side (you can flip a
card on it’s back) and there you can see where the card
originates from, how many times it has been collected,
republished and of course, who is the owner.

3.3.1 Archetypes cards
In order to get a better understanding of what the functionality
of a card can be, four archetypes of cards were defined. It are
examples which demonstrate different forms of interactions
possible with cards.

1. Identity Cards
Cards that contain a form of identity and can be ‘handed in’
when people enter a context group. Examples:

○ Business card
○ Facebook card
○ Instagram card

2. Document Cards
Cards that contain any form of document that can be viewable
and/or editable. Examples:

● Word card
● Adobe card
● Powerpoint card

14

TNO report

15 / 5346

3. Questionnaire Cards
Cards that contain any form of questionnaire. These type of
cards demand interaction from group members and generate
live statistics based on those interactions, such as poll results.
Examples:

● Poll Card
● Quiz Card

4. Presentation
Cards that contain any form of live stream. These type of
cards will show what is on the screen of the card publisher.
This is handy when you want to show your content plenary to
the people around you. Examples:

● Powerpoint stream card
● Photo gallery stream card
● Video stream card

5. Objects
Cards that contain information about an object. These type of
cards enable users to interact with an object that is in their
surroundings. Examples:

● Light Card (to control the light in a
room)

● Printer Card (to enable users to use a
nearby printer)

● Screen Card (to enable users to use a
screen nearby)

Some example functionalities that can happen within Onlive
and the role of a plugin and cards.

Poll
A poll can be prepared by someone (with a plugin) and then
published to a group. The publisher is the admin of the poll. He
can see intermediate results and start and stop the poll. Other
users can cast their vote and see the results of the poll.

● A poll card has a shared state when it is on the group
stage

● There are different views for publisher and other users
● When a poll is taken from the stage the taker gets a

card with the (intermediate) results.
● A new poll can be created from a saved poll (as a

template).

Dim lights
A dim light card is a group card that allows users in the group
to dim the light of a room. The card is not saveable nor can it
be in the hand of a user. The card only exist in the context of a
group.

● Interact with physical objects
● Can be made exclusively usable for specific group

members

Business card

15

TNO report

16 / 5346

A business card is a card that contains static information of a
user. When the card is published by the user he can add notes
to the card. When a card is taken from the group stage the
taker can also add notes to the card.

● Static information
● Allows for personal notes on a card
● When being published the plugin asks the user if the

notes should be published as well (publishing involves
the plugin).

Snake (game)
Snake is a real-time game where multiple snakes are on the
screen and should avoid to collide with each other. When
creating a new Snake card it can only be published to group
and not saved locally, as there is no point as it is multi player
game. When taking a card from the stage the saved card
contains the current scores of the game.
The publisher can start a new game.

● Real time messages between card instances
● When not playing the game messages can be ignored

3.3.2 Card states
Although a Card is always opened by the same Plugin, it can
have one of multiple states. Which states a card can have is
determined by the Plugin.

For example, a Plugin which is used for casting polls, can have
a state in which the designer can still change the option, it can
have state in which other users can vote, and it can have a
state in which the results of the poll can be shown.

Cards can change state whenever they are published or saved.
If and how this happens, is determined by the Plugin.

Technical aspects of card states are discussed in more detail in
the SDK documentation.

3.3.3 Card distribution
When a Card is stored on the smartphone, the user can decide
to publish the card to the stage of a group. And when the card
is published in the stage of a group, a user can decide that the
card can be saved on the smartphone. Whenever a card is
saved or stored, the original card does not get removed, but
rather a new card is created, either in the stage or locally on
the smartphone. This new card can have a different state then
the original card. If and how a card changes states whenever it
is published or saved, is defined by the Plugin.

Consider a Plugin for casting polls in a group. This card is
initially created locally, in which it has a state called ‘blueprint’.
When the card is in this state, the user can use the card to edit
the poll. It can, for example, change the question or modify the

16

TNO report

17 / 5346

options for which can be voted. When the card is published to
the stage of a group, the card changes to the state ‘live poll’. In
this state, users can vote for one of the options. Although
everyone is looking at the same instance of the card in the
state, the card presents itself differently to the user that
originally published the card to the stage. That user might see
the current results of the poll, while other users only see the
option to vote. When a user saves the card to the smartphone,
the card changes to the state ‘poll results’. This purpose of this
card is show the results of the poll. In this state it is no longer
possible for users to vote.

Defining states and state transitions is a powerful concept for
Plugin developers to define the behaviour of a card while it is
being used by users. Technical aspects of publishing and
saving cards is discussed in more detail in the SDK
documentation.

3.3.4 Card lifecycle rules
Users should feel safe when publishing cards to the stage of a
group. It should be transparent to users who is going to be able
to see the cards they publish. Groups should only contain a
manageable amount of cards.

In order to address these concerns, the right mechanics for
when cards are visible to other users, and when not, needed to
be defined. This was done in the form of rules. Since the

17

TNO report

18 / 5346

Context groups and the Nearby groups have different
mechanics, the rules are also slightly different.

In a Nearby group a card belongs to the publisher, in a context
group a card belongs to the group;

● A card is received only by the current members of the
group. This means that not necessarily everyone in the
group has the same cards on the stage;

● A card can always be removed from the stage by its
publisher;

● Cards are automatically removed from the stage if a
time limit is reached (e.g. 1 day)

● Nice to have: cards can be republished or made sticky
by the publisher in order to make them available to
new group members

Context groups

● When a user returns to a context group, cards that
were received in a previous session are still available
in his stage;

● When a user returns to a context group, cards that
were removed in his absence will also be removed
from his stage;

Nearby group

● When a publisher leaves the user's nearby group, that
publisher's cards are removed from the user's stage;

● When a publisher returns to the user's nearby group,
that publisher's cards are again available in the user's
stage;

● When a publisher removes a card in his nearby group,
that card will not be available anymore in the user's
stage when that publisher returns to the user's nearby
group.

3.4 Use cases in the app

For the user experience a comprehensive analysis was made
of the user stories and use cases the app should provide. All
use cases were prioritized using the MoSCoW principle
(determining for every use case if this Must, Should, Could, or
Won’t be implemented). All uses cases with the Must priority
have been implemented in the Proof-of-concept.

The analysis can be found in the ‘Onlive App - Functionality
and priority’ document (which is partly in Dutch).

18

TNO report

19 / 5346

4 Onlive ecosystem

In order to get a better understanding of what the business
side of the Onlive platform would look like, an analysis
was done of the stakeholders and the business models.

4.1 Stakeholders

The following (types) of stakeholders were identified in the
Onlive ecosystem.

1. Onlive: ​the owner of the Onlive platform

2. End user: ​the end user that uses the Onlive App on
his or her smartphone

3. Group owner: ​the person or party that registered a

Context Group in the Onlive backend. The Group
owner determines which Plugins are available within
the group.

4. Plugin developer: ​the person or company developing

Onlive Plugins

5. Plugin owner: ​the person or party which owns a
Plugin. Onlive will be the Plugin owner of some generic
Plugins.

4.2 Business model

The business model of the Onlive platform is that of a
two-sided platform: on one hand the platform becomes
interesting for End users when there are a lot of groups and
plugins available. On the other side, the platform is interesting
for Group owners (to create groups and Plugins) when there
are many End users on the platform.

This forms a challenge for bootstrapping the platform. In order
to get End users on the platform there needs to be Group
owners, and vice versa. The Nearby group was designed to
address this problem. Since the Nearby group doesn’t require
any Group owners or infrastructure, the Nearby group always
adds value to End users. This way the platform can attract End
users without Group owners present on the platform. So
initially, Onlive can start off as an app that makes it easier to
interact with people nearby, and when a critical mass has been
established Group owners can be attracted. Another approach
here is to start locally with Group owners. When Onlive is
useful on a certain location or event, the user experience can
be increased for a select group.

19

TNO report

20 / 5346

Three potential business models have been identified for
Onlive that could also work together:

● Changing Group owners for creating groups: certain
venues or events might want to provide a better
customer experience using Onlive. They can develop
for example custom Plugins which allows them to
serve their customers better. In order to be able to do
this, a Context group needs to be defined. Onlive could
change companies to do this.

● Facilitating a marketplace between Plugin developers
and Group owners: Certain Plugins will add value for a
certain type of business. For example, meeting rooms
in all kinds of companies can benefit from Plugins that
help facilitate meetings. Not all meeting venues would
be willing to develop their own Plugins. It would make
sense to create a marketplace, where Plugin
developers sell Plugins to Group owners that are
interested in providing these plugins to their customers.
Onlive could take a part of the revenue of the Plugin
developers.

20

TNO report

21 / 5346

5 System architecture

This section describes the technical implementation of the
proof of concept and the final version of the Onlive
platform.

5.1 Overview

The system architecture consists out of two major parts: The
backend, which are the centralized services which are
reachable through the Internet, and the frontend, the
application used by the End users.

Within the Onlive project, the frontend has been developed in
the form of an Android app. Eventually, it would make sense to
also developed it as an iOS app and possible in the form of a
web application.

21

TNO report

22 / 5346

The backend consist of the following major parts:

● Group administration: The registry where all Context
groups are define

● Communication: Component used for transferring
information between frontends

● Plugin hosting: The registry where all plugins are
stored. The frontend downloads these plugins
automatically when needed.

● Plugin backends: Although not part of the platform,
some Plugins might require their own backend for their
own administration.

The frontend consists of the following major parts:

● Sensing nearby devices: Component necessary for
determining which users should be in the Nearby group

● Sensing surroundings: Component necessary for
determining in which Context groups the users should
be (context engine)

● Group administration: Logic which determines in which
groups the users is

● Back-end connection: Component for exchanging
information with the backend

● Plugin runtime: Component executing the Plugins
● Peer-to-peer connections: Communication module for

when no Internet connection is available (not
implemented in the proof-of-concept)

5.2 Backend

The Onlive backend consists out of two technical components:
● Onlive communication (e.g. joining and leaving groups,

retrieving and publishing card data, communication
regarding cards)

● The context group definitions and Plugin hosting

Both parts have been implemented in the Onlive project. For
both parts, research has been done on how this can be
implemented in a scalable way.

5.2.1 Communication through XMPP
For the Onlive communication the decision was made to use of
the XMPP protocol. Originally designed for chat application,
XMPP has now evolved as a mature generic messaging
system, which supports many use cases. The advantage of
XMPP is that there are many server implementation available,
both with commercial licenses as with and open source
licenses. These existing server implementations differ in
functionality, but usually scalability and security are already
taken care of, making it an ideal starting point for the Onlive
communication backend.

22

TNO report

23 / 5346

There is already a lot of functionality available in XMPP. For
most of the functionality required for Onlive, a mapping could
be made to existing XMPP functionality. This way development
effort could be reduced. However, the functionality required for
the administration of the Nearby group was not present in
XMPP, since this concept is quite unique in its nature. In order
to solve that, a custom XMPP plugin was developed. This
component exclusively handles the administration of the
Nearby groups, which means that the heavy lifting is done by
the XMPP server. Although the plugin only runs on one server,
it is unlikely that it needs to be scaled among multiple server.
Although the implementation did not take it into consideration, it
is possible to create a distributed version of this component,
which makes it possible for the concept to scale to many users.
The XMPP plugin was developed in the Go programming
language.

A detailed description of the mapping between Onlive
functionality and XMPP functionality can be found in Appendix
A.

5.2.2 Context group definitions and plugin hosting
In the backend there is a registry, in which all Context groups
are defined. For defining a Context group, the following
information is required:

Field Type Description
Id string Unique identifier of the App Fragment in the java

package naming convention

version string (int . int) Version of the Group (must be updated for every
change in either of the three files)

name string Human-readable title of the Group
description string Human-readable description of the Group
predicate object Context-description as described in Appendix B
plugins string array Plugins that can be used within this group.

Plugins are identified by the URL they can be
obtained from.

In the current implementation, Context groups are defined in a
text-file in JSON format. There is a server, implemented in
Java, which makes the Context groups definitions available
through a REST API. With this REST API, frontend software
can synchronize the list of Context groups.

In order to allow the system to scale, a scheme was developed
to create separate registries for different geological locations.
This way, the frontend does not have to keep track of all
Context group definitions in the world. Since this posed no
issues for the proof-of-concept, this scheme was not
implemented in the project.

An example of the group definition is shown below.

23

TNO report

24 / 5346

{

 "id": "nl.arenapoort",

 "version": "1.1",

 "name": "ArenAPoort",

"description": "ArenAPoort is een uniek

gebied vol entertainment, winkels en horeca",

 "predicate": {

 "geographyDatas": [

{"latitude":52.316455,"longitude":4.941745,"alt

itude":0.0,"accuracy":1.0},

{"latitude":52.314277,"longitude":4.935179,"alt

itude":0.0,"accuracy":1.0},

{"latitude":52.310499,"longitude":4.93784,"alti

tude":0.0,"accuracy":1.0},

{"latitude":52.309659,"longitude":4.943676,"alt

itude":0.0,"accuracy":1.0},

{"latitude":52.310945,"longitude":4.947281,"alt

itude":0.0,"accuracy":1.0},

{"latitude":52.310814,"longitude":4.951358,"alt

itude":0.0,"accuracy":1.0},

{"latitude":52.313516,"longitude":4.960113,"alt

itude":0.0,"accuracy":1.0},

{"latitude":52.317451,"longitude":4.956293,"alt

itude":0.0,"accuracy":1.0},

{"latitude":52.315064,"longitude":4.947152,"alt

itude":0.0,"accuracy":1.0}

],

 "type":"geography.polygon"

 },

 "plugins": [

 "http://example.com/chat-v1.0.0.zip",

 "http://example.com/helloworld-1.0.0.zip"

]

}

For hosting the Plugins, a normal HTTP(S) server was used.
There are many commercial and open source implementations
available for HTTP(S) servers, and scaling them is a common
practice.

5.3 Frontend: The Onlive App

For this project, the frontend was implemented as an Android
app.

24

TNO report

25 / 5346

5.3.1 Architecture
The Android app consist out of one Activity, which displays the
user interface. The user interface consists out of several
fragments, which can be switched dynamically. The
architecture consist out of several background services, which
provided services to each other and to the user interface.

The image below shows a high-level picture of the architecture.
For the most important services, their responsibilities have
been described.

Group Service
GroupService exposes functions towards UI Activty.

● listen for group availability
● listen for group membership changes
● get list of available groups
● get list of members for a group
● get list of plugins for a group

Other responsibilities:

● listen for other nearby users using Google Nearby and
reporting it to Communication Service

Card Service
CardService exposes functions towards UI Activity.

● listen for card messages
● listen for new cards that were published
● publish a card
● publish a message to a card
● get cards for a group
● get all saved cards
● get messages for a card

User Service
UserService exposes functions towards UI Activity.

● retrieve information current user
● retrieve information off other users (async)
● update user details

25

TNO report

26 / 5346

Other responsibilities:

Create a new user first time app launches

Communication Service
CommunicationService exposes functions towards
GroupService

● listen for group membership changes (new members
joining or leaving a group)

● join a context group
● leave a context group
● publish a nearby observation

CommunicationService exposes functions towards
CardService

● listen for published cards
● listen for card messages
● publish a card
● publish a card message

CommunicationService exposes functions towards UserService

● get user details (async)
● update user account (name, avatar)
● register a user

5.3.2 Context Engine
The Context engine is the software component tracking sensor
data and determining if the user should be added to a Context
group. It tracks Wi-Fi signals, GPS location, Bluetooth signals
and NFC signals. It executes context rules, as described in
Annex B, and evaluates them using fuzzy logic. When a
context rule is evaluated above a fixed threshold, the user is
added to the given context group.

5.3.3 Plugin runtime
The Plugin runtime is the component launching and executing
the Plugins. This component was based on Apache Cordova,
an open source project which was designed to create
applications which can be packaged for many mobile platforms
(e.g. Android, iOS or Windows Phone). It does this by
packaging a web application as a native app. A key part of this
project is that it can connect a JavaScript API (which is part of
the web application) with native code. This is the main
mechanism of the Plugin runtime.

In order for the Plugin to know what kind of information to
display to the user, an API was developed. This API is for
example used to tell the Plugin what data a card contains, what
the state of the card is and how data is exchanged between
different instances of Cards.

26

TNO report

27 / 5346

A detailed description of the Plugin API can be found in the
Plugin SDK documentation.

5.4 Serverless communication

Although in the Netherlands a well-functioning wireless Internet
connection is almost ubiquitous, this is not always true for large
events or on other places of the world. The expectation is that
when Onlive is able to function without an Internet connection,
this might be a huge competitive advantage in those markets.

A technology that has the potential to make this happen is
mesh-networking (see
https://en.wikipedia.org/wiki/Mesh_networking). In a mesh
network, nodes (such as a smartphone) connect to some
nearby nodes using a close range networking technology such
as Wi-Fi or Bluetooth. Two nodes that want to exchange data,
A and B, might not be connected directly, but may be
connected indirectly through another node C. In a
mesh-network, a virtual, bigger network is created using the
connections that every node has. Data sometimes has to make
several “hops” to reach its destination.

Mesh networking has the potential to be used for the
communication requirements for Onlive. Since Onlive focuses
on the local environment, it makes sense to also distribute data
locally, instead of always relying on a central server. For
example, if a user wants to publish a card in the Nearby group,
it could communicate the card data using a mesh network,
without the requirement for an Internet connection. Even
Plugins themselves have the potential to be transmitted using
mesh networks. When a Plugin is not available on a
smartphone, it can be downloaded from another smartphone in
the network. The Onlive technical concept was designed in
such a way all functionality must be available when only
connected through a mesh network.

There are several libraries available already implementing
mesh networks for popular mobile platforms. They usually
operate with a combination of Bluetooth communication, BLE,
Wi-Fi direct or Wi-Fi infrastructure (i.e. a Wi-Fi access point),
sometimes using Internet as a back-up solution.

Research was done to all existing systems already available for
providing mesh networking. Implementing a mesh networking
solution was unfortunately not feasible during this project. The
following tables display the available technologies as well as
their most important properties. In this research also
technologies for discovering nearby devices were included
(relevant for determining members of the Nearby group).

 Bluetooth BLE Ultrasound Wi-Fi direct
Serval Project Yes ? No Yes
Underdark Yes ? No Yes

27

TNO report

28 / 5346

Open Connectivity ? No ? ?
WebRTC No No No No
MeshKit ? ? No ?
p2pkit ? Yes No ?
Hype Yes Yes No Yes
Briar project Yes Yes No Yes
Google Nearby Yes Yes Yes No
Quiet No No Yes No
Rumble Yes? ? No Yes?

Wi-Fi

infrastructure
Interoperable

Needs
Internet

Nearby
discovery

Serval Project Yes No No Yes?

Underdark Yes
Yes (via

infrastructure)
No No

Open Connectivity ? ? ? ?
WebRTC Yes Yes Yes No
MeshKit Yes ? ? ?
p2pkit ? Yes Yes Yes
Hype Yes ? No ?
Briar project Yes No No ?
Google Nearby Yes Yes Yes Yes

Quiet No Yes? No Yes

Rumble Yes No No? Yes

From this research was concluded that Serval project,
Underdark and Briar have the most potential. In order to
access the quality of these solutions, a proof of concept should
be developed.

28

TNO report

29 / 5346

6 Conclusions and further work

During the project a lot of developments have taken place. First
of all, the Onlive concept was refined. The main driver for this
process was the workshops with the project partners, in which
use cases were developed which could benefit their business.
This way, the Onlive concept has been validated from the
perspective of the future Group owners. From a technical point
of view, it was demonstrated that the concept is technically
feasible and scalable in the future. Research has been done on
how the platform could operate without an (always) active
Internet connection, giving it the potential as a successful
platform for delivering digital services in places where there is
no Internet connection. Also, the user interface has been tested
on a select group of users using paper prototyping. A
proof-of-concept was developed which demonstrates the
possibilities of the Onlive platform, and ideas have been
developed for business models for the platform.

The next step is to validate the platform in the market.
Companies have to be willing to invest in the development of
Plugins, and users must be willing to install and use the App.
We believe that by creating a proof-of-concept, we have build
to tools to take this next step. RSNMC is in the lead of creating
real-world applications of Onlive together with the Onlive
project partners. This way, we take a step towards a world
where the smartphone allows us to communicate with the
whole world, but mainly the world directly surrounding us.

29

TNO report

30 / 5346

7 Appendix A: Mapping of Onlive

concepts to XMPP functionality

7.1 Interacting with the Onlive XMPP service

The Onlive XMPP service assists Onlive clients with group and
card management.
For the Nearby group there are the following use cases:

● Posting the observation of another nearby user
● Getting nearby group change notifications
● Getting cards & messages of a nearby user

For context group the use cases are:

● Joining a context group
● Leaving a context group
● Getting current group memberships

And the following use cases are generic for both the nearby
group and the context group:

● Registering with the Onlive service
● Listing other members of a group
● Publishing a card
● Removing a card
● Sending a message to a card

In the background the Onlive service will monitor the user state
to check whether card event subscriptions should be cancelled
and whether users should be removed from a group.
Where applicable messages will be designed to match existing
or experimental XEPs, this minimizes changes to the code
when these new XEPs become generally available.
The Onlive services uses PubSub nodes (XEP-0060) for its
storage. PubSub nodes should be managed (created,
removed). Some XMPP servers may support node auto
creation. In this case they will advertise the feature
http://jabber.org/protocol/pubsub#auto-create in the disco
items.

7.2 Use cases for Nearby groups

7.2.1 Posting the observation of another nearby user

When the clients receives an event that another user is seen
nearby it sends an observation message to the Onlive service

30

TNO report

31 / 5346

<message

 from="alice@example.com/stage"

 to="onlive.example.com"

 id="observ1">

 <observation xmlns="urn:onlive:1">

 <participant jid="bob@example.com"/>

 </observation>

</message>

The onlive service processes the message and MIGHT send
notification messages to one or more users.

7.2.2 Getting nearby group change notifications

When the Onlive service decides that nearby groups did
change it notifies the affected users
The decision to send a change notification can be based upon
an observation message that was received before, or by
detecting that an user went offline (presence unavailable).
<message

 from="nearby@onlive.example.com"

 to="alice@example.com/stage"

 id="notify1">

<items

node="urn:onlive:nodes:participants:1">

 <item jid="bob@example.com"/>

 <retract jid="carol@example.com"/>

 </items>

</message>

Cards that are on the stage from users that are retracted
MUST be removed by the client from the stage of the Nearby
group.

7.2.3 Getting cards of nearby user
This story can be used to get the cards of new nearby group
members or to obtain a list of cards that are published by the
user itself.

1. Query the service
<iq type="get"

 from="alice@example.com/stage"

 to="nearby@onlive.example.com"

 id="items1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

 <items node="bob@example.com"/>

 </pubsub>

31

TNO report

32 / 5346

</iq>

2. The Onlive server responds by sending a list of
published nearby cards from the queried user

The Onlive server MUST check if the users are connected in
their nearby groups. The Onlive service retrieves the items
from a PubSub node associated with the user. This step is
omitted from this document for brevity.
<iq type="result"

 from="nearby@onlive.example.com"

 to="alice@example.com/stage"

 id="items1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

 <items node="bob@example.com">

<item

id="bob@example.com#cards#123e4567-e89b-12d3-a4

56-426655440000">

 <plugin xmlns="onlive:plugin">

 <id>onlive:plugin:hello:1</id>

 <data>

qANQR1DBwU4DX7jmYZnncmUQB/9KuKBddzQH+tZ1ZywKK0y

HKnq57kWq+RFtQdCJ

WpdWpR0uQsuJe7+vh3NWn59/gTc5MDlX8dS9p0ovStmNcyL

hxVgmqS8ZKhsblVeu

IpQ0JgavABqibJolc3BKrVtVV1igKiX/N7Pi8RtY1K18toa

MDhdEfhBRzO/XB0+P

AQhYlRjNacGcslkhXqNjK5Va4tuOAPy2n1Q8UUrHbUd0g+x

J9Bm0G0LZXyvCWyKH

kuNEHFQiLuCY6Iv0myq6iX6tjuHehZlFSh80b5BVV9tNLwN

R5Eqz1klxMhoghJOA

 </data>

<published>2003-12-13T18:30:02Z</published>

<updated>2003-12-13T18:30:02Z</updated>

 </plugin>

 </item>

 <!-- more items if applicable -->

 </items>

 </pubsub>

</iq>

3. For each card the client MUST get the messages that
belong to the card

<iq type="get"

 from="alice@example.com/stage"

 to="nearby@onlive.example.com"

32

TNO report

33 / 5346

 id="items2">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

<items

node="bob@example.com#cards#123e4567-e89b-12d3-

a456-426655440000"/>

 </pubsub>

</iq>

4. The Onlive service retrieves the messages and send
them back to the clients

The Onlive service retrieves the items from a PubSub node
associated with the user. This step is omitted from this
document for brevity.
<iq type="result"

 from="nearby@onlive.example.com"

 to="alice@example.com/stage"

 id="items1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

<items

node="bob@example.com#cards#123e4567-e89b-12d3-

a456-426655440000">

<item

id="ae890ac52d0df67ed7cfdf51b644e901">

<event xmlns="onlive:event"

jid="alice@example.com">

 <id>onlive:plugin:poll:1:vote</id>

 <data>

{ "pizza": false, "pancakes": true

}

 </data>

<published>2003-12-13T18:30:02Z</published>

<updated>2003-12-13T18:30:02Z</updated>

 </event>

 </item>

 <!-- more items if applicable -->

 </items>

 </pubsub>

</iq>

7.3 Use cases for context groups

7.3.1 Joining a context group

33

TNO report

34 / 5346

1. The client sends a join message to the Onlive service
that it wants to join the wonderland channel.

<iq type="set"

 from="alice@example.com/stage"

 to="wonderland@onlive.example.com"

 id="E6E10350-76CF-40C6-B91B-1EA08C332FC7">

 <join xmlns="urn:onlive:1">

 <subscribe node="urn:onlive:nodes:cards"/>

<subscribe

node="urn:onlive:nodes:participants"/>

 </join>

</iq>

2. The service responds when the join message is
successful

<iq type="result"

 from="wonderland@onlive.example.com"

 to="alice@example.com/stage"

 id="E6E10350-76CF-40C6-B91B-1EA08C332FC7">

 <join xmlns="urn:onlive:1">

 <subscribe node="urn:onlive:nodes:cards"/>

<subscribe

node="urn:onlive:nodes:participants"/>

 </join>

</iq>

When the join is not successful the server will send an error
message.

3. The service now adds the user to the PubSub node
that holds the active participants of the group.

<iq type="set"

 from="onlive.example.com"

 to="pubsub.example.com"

 id="publish1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

 <publish node="wonderland:participants">

 <item id="alice@example.com">

<participant xmlns="urn:onlive:1"

jid="alice@example.com/stage"/>

 </item>

 </publish>

 </pubsub>

</iq>

4. The PubSub service responds to the Onlive service
<iq type="result"

 from="pubsub.example.com"

 to="onlive.example.com"

 id="publish1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

34

TNO report

35 / 5346

 <publish node="wonderland:participants">

 <item id="alice@example.com"/>

 </publish>

 </pubsub>

</iq>

5. The PubSub service notifies other participants of the
group that Alice just joined.

<message from="wonderland@onlive.example.com"

to="bob@example.com/stage" id="foo">

<event

xmlns="http://jabber.org/protocol/pubsub#event"

>

<items

node="urn:onlive:nodes:participants">

 <item id="alice@example.com"/>

 </items>

 </event>

</message>

7.3.2 Leaving a context group

1. The client sends a leave message to the Onlive service
that it wants to leave the wonderland group.

<iq type="set"

 from="alice@example.com/stage"

 to="wonderland@onlive.example.com"

 id="E6E10350-76CF-40C6-B91B-1EA08C332FC7">

 <leave xmlns="urn:onlive:1"/>

</iq>

2. The service responds when the leave message is
successful

<iq type="result"

 from="wonderland@onlive.example.com"

 to="alice@example.com/stage"

 id="E6E10350-76CF-40C6-B91B-1EA08C332FC7">

 <leave xmlns="urn:xmpp:mix:1"/>

</iq>

3. The service now removes the user from the PubSub
node that holds the active participants of the group.

<iq type="set"

 from="onlive.example.com"

 to="pubsub.example.com"

 id="retract1">

35

TNO report

36 / 5346

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

 <retract node="wonderland:participants">

 <item id="alice@example.com"/>

 </retract>

 </pubsub>

</iq>

4. The PubSub service responds to the onlive service
<iq type="result"

 from="pubsub.example.com"

 to="onlive.example.com"

 id="retract1"/>

The PubSub service notifies other participants

of the group that Alice just left.

<message from="wonderland@onlive.example.com"

to="bob@example.com/stage" id="foo">

<event

xmlns="http://jabber.org/protocol/pubsub#event"

>

<items

node="urn:onlive:nodes:participants">

 <retract id="alice@example.com">

 </items>

 </event>

</message>

7.4 Generic use cases

7.4.1 Registering with the Onlive server
Before a client is going to interact with the Onlive server it
should create a presence relationship with the Onlive service.
This can be done by sending a presence message.

1. The client requests a presence relationship
<presence type="subscribe"

 from="alice@example.com"

 to = "onlive.example.com"/>

2. The service accepts the presence subscription
<presence type="subscribed"

 from="onlive.example.com"

 to="alice@example.com"/>

36

TNO report

37 / 5346

3. The service requests a presence subscription from the
client

<presence type="subscribe"

 from="onlive.example.com"

 to="alice@example.com"/>

4. The client accepts the presence subscription
<presence type="subscribed"

 from="alice@example.com"

 to="onlive.example.com"

This use case can also be fulfilled by creating a global address
list on the server that makes sure that all XMPP users have a
subscription to the Onlive service. Some XMPP servers have
such a feature.

7.4.2 Listing other members of a group
Clients can query what other participants are part of a group.
The service should check if the client that issues the request is
also part of the group and is allowed to get the list.

1. The clients sends the message to the group
<iq type="get"

 from="alice@example.com/stage"

 to="wonderland@onlive.example.com"

 id="items1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

<items

node="urn:onlive:nodes:participants"/>

 </pubsub>

</iq>

2. In case of a context group the server retrieves the
items from the PubSub node

The items can also be read from a local cache or the Nearby
user graph. In that case the message below and the response
in step 3 are not needed.
<iq type="get"

 from="onlive.example.com"

 to="pubsub.example.com"

 id="items2">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

 <items node="wonderland:participants"/>

37

TNO report

38 / 5346

 </pubsub>

</iq>

3. The PubSub service responds with the list
<iq type="result"

 from="pubsub.example.com"

 to="onlive.example.com"

 id="items2">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

 <items node="wonderland:participants">

 <item id="bob@example.com">

<participant xmlns="urn:onlive:1"

jid="bob@example.com/stage"/>

 </item>

 <item id="carol@example.com">

<participant xmlns="urn:onlive:1"

jid="carol@example.com/stage"/>

 </item>

 </items>

 </pubsub>

</iq>

A node may have a large number of items associated with it, in
which case it may be problematic to return all of the items in
response to an items request. In this case, the service
SHOULD return some of the items and note that the list of
items has been truncated by including a Result Set
Management (XEP-0059) notation. See also XEP-0060.

4. The Onlive service forwards the list to the client.
<iq type="result"

 from="wonderland@pubsub.example.com"

 to="alice@example.com/stage"

 id="items1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

<items

node="urn:onlive:nodes:participants">

 <item id="bob@example.com"/>

 <item id="carol@example.com"/>

 </items>

 </pubsub>

</iq>

7.4.3 Publishing a card
There are some differences between publishing a card to the
Nearby group or to a context group but most of the flow looks
similar. The main difference is that the cards that are in a
context group are not stored on the server. Cards that are

38

TNO report

39 / 5346

published to the Nearby group are stored on the server in a
PubSub node that is affiliated to the user that published the
card.
Where there are differences between the flows they are
outlined below.

1. Alice publishes a card to the wonderland group
<iq type="set"

 from="alice@example.com/stage"

 to="wonderland@onlive.example.com"

 id="publish1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

 <publish node="urn:onlive:nodes:cards">

 <item>

 <plugin xmlns="urn:onlive:1">

 <id>urn:onlive:plugin:hello:1</id>

 <data>

qANQR1DBwU4DX7jmYZnncmUQB/9KuKBddzQH+tZ1ZywKK0y

HKnq57kWq+RFtQdCJ

WpdWpR0uQsuJe7+vh3NWn59/gTc5MDlX8dS9p0ovStmNcyL

hxVgmqS8ZKhsblVeu

IpQ0JgavABqibJolc3BKrVtVV1igKiX/N7Pi8RtY1K18toa

MDhdEfhBRzO/XB0+P

AQhYlRjNacGcslkhXqNjK5Va4tuOAPy2n1Q8UUrHbUd0g+x

J9Bm0G0LZXyvCWyKH

kuNEHFQiLuCY6Iv0myq6iX6tjuHehZlFSh80b5BVV9tNLwN

R5Eqz1klxMhoghJOA

 </data>

<published>2003-12-13T18:30:02Z</published>

<updated>2003-12-13T18:30:02Z</updated>

 </plugin>

 </item>

 </publish>

 </pubsub>

</iq>

If the client did id to the item element the service MUST ignore
that ID and generate one according to the rules.

2. The service creates a PubSub node where messages
related to the card should be published to

The card id MUST be unique within the group. The node id is
generated as follows:
For the Nearby group:

39

TNO report

40 / 5346

<bare JID of the user publishing the

card>#cards#<id of the card>

For a context group:
<bare JID of the user publishing the

card>#<jid of the group>#cards#<id of the card>

<iq type="set"

 from="onlive.example.com"

 to="pubsub.example.com"

 id="create1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

<create

node="wonderland#cards#123e4567-e89b-12d3-a456-

426655440000"/>

 <configure>

 <x xmlns="jabber:x:data" type="submit">

 <field var="FORM_TYPE" type="hidden">

<value>http://jabber.org/protocol/pubsub#node_c

onfig</value>

 </field>

<field

var="pubsub#deliver_notifications"><value>1</va

lue></field>

<field

var="pubsub#deliver_payloads"><value>1</value><

/field>

<field

var="pubsub#persist_items"><value>1</value></fi

eld>

<field

var="pubsub#max_items"><value>1000</value></fie

ld>

<field

var="pubsub#item_expire"><value>604800</value><

/field>

<field

var="pubsub#access_model"><value>whitelist</val

ue></field>

<field

var="pubsub#publish_model"><value>subscribers</

value></field>

<field

var="pubsub#purge_offline"><value>0</value></fi

eld>

<field

var="pubsub#presence_based_delivery"><value>1</

value></field>

<field

var="pubsub#max_payload_size"><value>1028</valu

e></field>

 </x>

 </configure>

 </pubsub>

40

TNO report

41 / 5346

</iq>

Creating a pubsub node requires server support for
create-nodes and the user requesting the node should be
allowed to create pubsub nodes.

3. The PubSub server responds that the node was
created.

<iq type="result"

 from="pubsub.example.com"

 to="onlive.example.com"

 id="create2">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

<create

node="wonderland#cards#123e4567-e89b-12d3-a456-

426655440000"/>

 </pubsub>

</iq>

4. In case of the Nearby group the service adds the card
to the PubSub node associated with the user.

Note that context groups do not store cards on the server,
hence this step is omitted for cards that are published to
context groups

<iq type="set"

 from="onlive.example.com"

 to="pubsub.example.com"

 id="publish3">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

 <publish node="alice@example.com">

<item

id="alice@example.com#cards#123e4567-e89b-12d3-

a456-426655440000">

 <plugin xmlns="urn:onlive:1">

 <id>urn:onlive:plugin:hello:1</id>

 <data>

qANQR1DBwU4DX7jmYZnncmUQB/9KuKBddzQH+tZ1ZywKK0y

HKnq57kWq+RFtQdCJ

WpdWpR0uQsuJe7+vh3NWn59/gTc5MDlX8dS9p0ovStmNcyL

hxVgmqS8ZKhsblVeu

IpQ0JgavABqibJolc3BKrVtVV1igKiX/N7Pi8RtY1K18toa

MDhdEfhBRzO/XB0+P

AQhYlRjNacGcslkhXqNjK5Va4tuOAPy2n1Q8UUrHbUd0g+x

J9Bm0G0LZXyvCWyKH

41

TNO report

42 / 5346

kuNEHFQiLuCY6Iv0myq6iX6tjuHehZlFSh80b5BVV9tNLwN

R5Eqz1klxMhoghJOA

 </data>

<published>2003-12-13T18:30:02Z</published>

<updated>2003-12-13T18:30:02Z</updated>

 </plugin>

 </item>

 </publish>

 </pubsub>

</iq>

The PubSub server responds that the card was

added correctly:

<iq type="result"

 from="pubsub.example.com"

 to="onlive.example.com"

 id="publish3">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

 <publish node="alice@example.com">

<item

id="alice@example.com#cards#123e4567-e89b-12d3-

a456-426655440000"/>

 </publish>

 </pubsub>

</iq>

In case the node does not exsist the Onlive service MUST
create the node before adding the card to the node.

5. The service forwards the card to other members of the
group

The card will not be stored on the server but will only be
available at the clients.
<message

 from="wonderland@onlive.example.com"

 to="example.com">

<addresses

xmlns="http://jabber.org/protocol/address">

<address type="bcc"

jid="bob@example.com/stage"/>

<address type="bcc"

jid="carol@example.com/stage"/>

<address type="replyroom"

jid="wonderland@onlive.example.com"/>

 </addresses>

<publish

xmlns="http://jabber.org/protocol/pubsub"

node="urn:onlive:nodes:cards">

<item

id="alice@example.com#cards#123e4567-e89b-12d3-

a456-426655440000">

 <plugin xmlns="urn:onlive:1">

42

TNO report

43 / 5346

 <id>urn:onlive:plugin:hello:1</id>

 <data>

qANQR1DBwU4DX7jmYZnncmUQB/9KuKBddzQH+tZ1ZywKK0y

HKnq57kWq+RFtQdCJ

WpdWpR0uQsuJe7+vh3NWn59/gTc5MDlX8dS9p0ovStmNcyL

hxVgmqS8ZKhsblVeu

IpQ0JgavABqibJolc3BKrVtVV1igKiX/N7Pi8RtY1K18toa

MDhdEfhBRzO/XB0+P

AQhYlRjNacGcslkhXqNjK5Va4tuOAPy2n1Q8UUrHbUd0g+x

J9Bm0G0LZXyvCWyKH

kuNEHFQiLuCY6Iv0myq6iX6tjuHehZlFSh80b5BVV9tNLwN

R5Eqz1klxMhoghJOA

 </data>

<published>2003-12-13T18:30:02Z</published>

 <updated>2003-12-13T18:30:02Z</updated>

 </plugin>

 </item>

 </publish>

</message>

6. The service confirms that the card was published
correctly

<iq type="result"

 from="wonderland@onlive.example.com"

 to="alice@example.com/stage"

 id="publish1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

 <publish node="urn:onlive:nodes:cards">

<item

id="alice@example.com#cards#123e4567-e89b-12d3-

a456-426655440000"/>

 </publish>

 </pubsub>

</iq>

7.4.4 Removing a card
When a user removes a card from the group it send a request
to the onlive service. The service sends a card removal
message to other members of the group and removes the
message PubSub node of that card.

1. Alice request removal of her card
<iq type="set"

43

TNO report

44 / 5346

 from="alice@example.com/stage"

 to="wonderland@onlive.example.com"

 id="retract1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

<retract node="urn:onlive:nodes:cards"

notify="true">

<item

id="wonderland@onlive.example.com#cards#123e456

7-e89b-12d3-a456-426655440000"/>

 </retract>

 </pubsub>

</iq>

2. The Onlive service removes the PubSub node that
holds messages of the card

<iq type="set"

 from="onlive.example.com"

 to="pubsub.example.com"

 id="delete1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub#owner"

>

<delete

node="wonderland@onlive.example.com#cards#123e4

567-e89b-12d3-a456-426655440000"/>

 </pubsub>

</iq>

3. The PubSub service responds to the removal request
<iq type="result"

 to="onlive.example.com"

 from="pubsub.example.com"

 id="delete1"/>

4. In case the card is published in the nearby group the
card is removed from the node containing the user's
nearby cards

<iq type="set"

 from="onlive.example.com"

 to="pubsub.example.com"

 id="retract2">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

 <retract node="urn:onlive:nodes:cards">

<item

id="wonderland#cards#123e4567-e89b-12d3-a456-42

6655440000"/>

 </retract>

 </pubsub>

</iq>

The PubSub server responds to the request:

44

TNO report

45 / 5346

<iq type="result"

 from="pubsub.example.com"

 to="onlive.example.com"

 id="retract2"/>

5. The Onlive service forwards the card retraction request
to other members of the group

The group identifier of the group the card should be retracted
from is identified by the localpart of the JID of the sender. In the
case below it is wonderland.
<message

 from="wonderland@onlive.example.com"

 to="example.com">

<addresses

xmlns="http://jabber.org/protocol/address">

<address type="bcc"

jid="bob@example.com/stage"/>

<address type="bcc"

jid="carol@example.com/stage"/>

<address type="replyroom"

jid="wonderland@onlive.example.com"/>

 </addresses>

<event

xmlns="http://jabber.org/protocol/pubsub#event"

>

 <items node="urn:onlive:nodes:cards">

<retract

id="wonderland#cards#ae890ac52d0df67ed7cfdf51b6

44e901"/>

 </items>

 </event>

</message>

6. Finally the Onlive service confirms the removal to the
requesting client

<iq type="result"

 from="onlive.example.com"

 to="alice@example.com/stage"

 id="retract1"/>

7.4.5 Sending a message to a card
Messages to cards in the Onlive group are send via the Onlive
service. This service acts as a proxy between the PubSub
node of the card and the clients that have access to the card.
This proxy function should check whether clients are still in the
group and should be able to post and receive messages on a
card.

1. Events on the cards are send via the Onlive service

45

TNO report

46 / 5346

<iq type="set"

 from="alice@example.com/stage"

 to="nearby@onlive.example.com"

 id="publish1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

<publish

node="bob@example.com#cards#123e4567-e89b-12d3-

a456-426655440000">

 <item>

<event xmlns="onlive:event"

jid="alice@example.com">

 <id>onlive:plugin:poll:1:vote</id>

 <data>

{ "pizza": false, "pancakes": true

}

 </data>

<published>2003-12-13T18:30:02Z</published>

<updated>2003-12-13T18:30:02Z</updated>

 </event>

 </item>

 </publish>

 </pubsub>

</iq>

2. The server adds the message to the PubSub node of
the messages

The server MUST check if Alice is still in the same Nearby
group as Bob before adding the message.
<iq type="set"

 from="onlive.example.com"

 to="pubsub.example.com"

 id="publish2">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

<publish

node="bob@example.com#cards#123e4567-e89b-12d3-

a456-426655440000">

 <item>

<event xmlns="onlive:event"

jid="alice@example.com">

 <id>onlive:plugin:poll:1:vote</id>

 <data>

{ "pizza": false, "pancakes": true

}

 </data>

<published>2003-12-13T18:30:02Z</published>

<updated>2003-12-13T18:30:02Z</updated>

 </event>

 </item>

46

TNO report

47 / 5346

 </publish>

 </pubsub>

</iq>

3. The PubSub service confirms that the message was
added

<iq type="result"

 from="pubsub.example.com"

 to="onlive.example.com"

 id="publish2">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

<publish

node="bob@example.com#cards#123e4567-e89b-12d3-

a456-426655440000">

<item

id="ae890ac52d0df67ed7cfdf51b644e901"/>

 </publish>

 </pubsub>

</iq>

4. The service confirms that the message was send
<iq type="result"

 from="nearby@onlive.example.com"

 to="alice@example.com/stage"

 id="publish1">

<pubsub

xmlns="http://jabber.org/protocol/pubsub">

<publish

node="bob@example.com#cards#123e4567-e89b-12d3-

a456-426655440000">

<item

id="ae890ac52d0df67ed7cfdf51b644e901"/>

 </publish>

 </pubsub>

</iq>

5. The server sends the notification to members of Bob"s
nearby group

<message

 from="nearby@onlive.example.com"

 to="example.com">

<addresses

xmlns="http://jabber.org/protocol/address">

<address type="bcc"

jid="bob@example.com/stage"/>

<address type="bcc"

jid="carol@example.com/stage"/>

<address type="replyroom"

jid="nearby@onlive.example.com"/>

 </addresses>

47

TNO report

48 / 5346

<event

xmlns="http://jabber.org/protocol/pubsub#event"

>

<items

node="bob@example.com#cards#123e4567-e89b-12d3-

a456-426655440000">

<item

id="ae890ac52d0df67ed7cfdf51b644e901">

<event xmlns="onlive:event"

jid="alice@example.com">

 <id>onlive:plugin:poll:1:vote</id>

 <data>

{ "pizza": false, "pancakes": true

}

 </data>

<published>2003-12-13T18:30:02Z</published>

<updated>2003-12-13T18:30:02Z</updated>

 </event>

 </item>

 </items>

 </event>

</message>

48

TNO report

49 / 5346

8 Appendix B: Context description

language

Context description

The group selection process is all about the context of the
smartphone. Smartphones have a lot of sensors to gather data
from their surroundings, such as a GPS sensor, which can be
used to determine the geographical location, a Bluetooth
adapter, which can be used to detect Bluetooth beacons and a
Wi-Fi adapter, which can be used to detect access points.
The process of selecting relevant groups works as follows: the
owner of the group describes in which context the group is
relevant. We call this the context description. The Onlive
platform regularly checks if the current context information
matches the description. If there is a match, the group is
presented to the user.

8.1 Context Description Language

In order to describe a certain context, we developed a context
description language. With this language a developer can
describe a context. For all the context sources, one or more
predicates are available. For example, if a group is relevant at
a certain geographical location, the GeographyCirclePredicate
can be used to indicate that a group is relevant at a certain
location (described as latitude and longitude coordinates) with
a radius (described in meters). When the smartphone is inside
this circle, the group will be presented.
It is possible to make logical combinations between predicates.
For example, a group for visitors of a restaurant might be
relevant at a certain location AND when the restaurant is open.
Predicates can be combined using logical operators.
Since context information is never perfect, we have to deal with
uncertainty. For example, most of the time there will be a rough
estimate on where the smartphone is, and not a precise
location. In order to deal with uncertainty, fuzzy logic is used to
evaluate the expression. This means that an expression does
not evaluate to be true or false, but that the truth of the
expression is indicated as a number between 0 and 1. A value
of 0 would mean absolutely false and value of 1 means
absolutely true. When the truthness reaches a certain
threshold, the group is considered likely to be relevant and is
presented to the user.
In the Context sources section you can see some examples of
a context description for a certain context source. In the
Operations section you can see how you can combine context
descriptions in order to make logical combinations.

49

TNO report

50 / 5346

8.2 Context sources

There are currently several context sources implemented and
available to group owners. In future versions of the Onlive
Platform more context sources might be added.

8.2.1 Bluetooth
Name: BluetoothMacPredicate
Arguments: Mac-address (String)
Relevant: When device with given mac address is detected
Example:
{

 "type": "bluetooth.mac",

 "mac": "06-00-00-00-00-00"

}

Name: BluetoothAdvertisementPredicate
Arguments: UUID (String), major (Integer), minor (Integer)
Relevant: When given bluetooth beacon is detected
Example:
{

 "type": "bluetooth.advertisement",

"uuid":

"123e4567-e89b-12d3-a456-426655440000",

 "major": 0,

 "minor": 1

}

8.2.2 Clock
Name: ClockDateRangePredicate
Arguments: start date (String), end date (String)
Relevant: When between given dates
Example:
{

 "type": "clock.daterange",

 "dateStart": "Apr 21, 2016 1:13:07 PM",

 "dateStop": "Apr 21, 2016 1:13:07 PM"

}

Name: ClockDayOfWeekPredicate
Arguments: day of week in capitals (String)
Relevant: When today is given weekday
Example:
{

 "type": "clock.dayofweek",

 "weekday": "MONDAY"

}

Name: ClockTimeOfDayPredicate
Arguments: minutes after midnight start (Integer), minutes after
midnight end (Integer)
Relevant: When time is between interval
Example:
{

50

TNO report

51 / 5346

 "type": "clock.timeofday",

 "minutesStart": 540,

 "minutesStop": 1020

}

8.2.3 Geography
Name: GeographyPolygonPredicate
Arguments: List of points forming a polygon
Relevant: When inside given polygon
Example:
{

 "type": "geography.polygon",

 "geographyDatas": [

 {

 "latitude": 53.1996,

 "longitude": 6.522923,

 "altitude": 0.0,

 "accuracy": 1.0

 },

 {

 "latitude": 53.199728,

 "longitude": 6.523921,

 "altitude": 0.0,

 "accuracy": 1.0

 },

 {

 "latitude": 53.199053,

 "longitude": 6.524189,

 "altitude": 0.0,

 "accuracy": 1.0

 },

 {

 "latitude": 53.198967,

 "longitude": 6.523148,

 "altitude": 0.0,

 "accuracy": 1.0

 }

]

}

Name: GeographyCirclePredicate
Arguments: Center (latitude longitude) and radius in meters
(Double)
Relevant: When inside given circle
Example:
{

 "type": "geography.circle",

 "center": {

 "latitude": 53.1996,

 "longitude": 6.522923,

 "altitude": 0.0,

 "accuracy": 1.0

 },

 "radius": 100.0

}

51

TNO report

52 / 5346

8.2.4 NFC
Name: NfcTextPredicate
Arguments: contexts of NFC tag (String)
Relevant: 30 seconds after a NFC tag with the given String is
data is scanned
Example:
{

 "type": "nfc.text",

 "text": "contents"

}

8.2.5 Wi-Fi
Name: MacPredicate
Arguments: MAC address of access point (String)
Relevant: When access point with given MAC address is in
range
Example:
{

 "type": ".mac",

 "mac": "06-00-00-00-00-00"

}

Name: WifiWi-FiSsidPredicate
Arguments: SSID of access point (String)
Relevant: When access point with given SSID is in range
Example:
{

 "type": ".ssid",

 "ssid": "SSID"

}

8.2.6 Constants
There are also three constants. They can be useful for testing
or for some logical expressions.
True, will make the group always appear. Corresponds to the
fuzzy-logical value of 1.
{

 "type": "true"

}

False, will make the group never appear. Corresponds to the
fuzzy-logical value of 0.
{

 "type": "false"

}

Unknown, useful for testing. Corresponds to the fuzzy-logical
value of 0.5.
{

 "type": "unknown"

}

52

TNO report

53 / 5346

8.2.7 Operators
There are three operators in order to make logical
combinations between predicates: The And operator, the Or
operator and the Not operator.
Example of the AND predicate
Evaluation: and(p1, p2) = p1 * p2
{

 "type": "and",

 "predicate1": {

 "type": "true"

 },

 "predicate2": {

 "type": "false"

 }

}

Example of the OR predicate
Evaluation: or(p1, p2) = 1 - ((1 - p1) * (1 - p2))
{

 "type": "or",

 "predicate1": {

 "type": "true"

 },

 "predicate2": {

 "type": "false"

 }

}

Example of the NOT predicate
Evaluation: not(p) = 1 - p
{

 "type": "not",

 "predicate": {

 "type": "false"

 }

}

53

